BACKGROUND INFORMATION

- **Chlorpyrifos**: organophosphate insecticide commonly used (Britton et al. 2016)
- Acetylcholinesterase inhibitor
- Acetylcholine is a neurotransmitter that can overstimulate the nervous system if not inhibited
- **Symptoms**: Seizures, fatal paralysis, and cell failure
- The US, European Union, Brazil, and China are the four regions that produce the most agricultural pesticides and agriculture in the world.
 - US coming in second just after China
 - Common targets in US: alfalfa (Ellsworth et al. 2016), kale, strawberries, and pepper variants such as spicy peppers (USDA 2019)
 - Pesticide regulation is getting better in the US, but other countries may be unregulated
- Chlorpyrifos: 5.25% usage rate in Mexico in 2018 (Gonzalez et al. 2018)
- **Continued ingestion** may lead to aggregate organophosphate buildup (Pang et al. 2002)
- As such, we researched pesticide residues on jalapeño peppers (Capsicum annuum) grown in Mexico & sold in AZ, concentrating on Chlorpyrifos
- This resulted in a student-led method development for residue extraction and organic compound cleanup

HYPOTHESES

- If pesticide isn’t water soluble, then pesticide residues are more likely to be on the outside of the sample than in the internal tissue.
- Jalapeños will have chlorpyrifos residue less than or equal to the regulation cut off of the EPA (1 ng/mL), because they’re being imported and sold in the US.

METHOD DEVELOPMENT OF RESIDUALS ON JALAPEÑOS

Miguel Karlo Dote, Symone Griffith, & Dr. Karen H. Watanabe

METHODOLOGY

- **Surface Wash with Acetonitrile**
- **Homogenization with Quechers (AOAC Method)**
- **Activated Charcoal Pigment Cleanup**
- **Nitrogenous Evaporation**
- **Surface Wash**
- **Evaporation**
- **Calibration Curve Dilutions**
- **GC-MS Analysis**

RESULTS

- The outer washes of the pepper did not show any peaks other than the recovery standards
- Chlorpyrifos was not significantly found internally or externally
- Most prominent chemicals found in extracts included waxes and capsaicin
- All market sources were identical under GC-MS analysis (Fry’s, Safeway, Sprouts, Whole Foods)
- Experiment requires further method development: removal of pigment, analyte recovery, and process streamlining

DISCUSSION

- **Sample choice** shifted due to pepper availability: study dependent on season and domestic farming areas
- Method development became essential to process, given student-directed experimental design, with additions such as:
 - Washing the exterior of the pepper with acetonitrile
 - Using activated charcoal as a means to remove pigment from prepared sample containing the analyte
- Upon further experimentation, activated charcoal was effective in removing pigment from homogenous samples
- However, after running said samples in the GC/MS it was found that the recovery rate was significantly reduced
 - From ~65% to ~15% chlorpyrifos
- **Further research** will be conducted in the fall to shift focus from a single pesticide to a multi-residual pesticide study

Table 1: Values of chlorpyrifos detected for each sample, calculated using a calibration curve and approximated to the hundredths. Samples labelled “spiked” were spiked with chlorpyrifos as a positive control.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chlorpyrifos Detected (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-WF1 Charcoal (Treated)</td>
<td>4.41</td>
</tr>
<tr>
<td>-WF1 No Charcoal (Treated)</td>
<td>4.41</td>
</tr>
<tr>
<td>-WF2 Pre-test</td>
<td>4.41</td>
</tr>
<tr>
<td>-BF1</td>
<td>0</td>
</tr>
<tr>
<td>-BF2</td>
<td>0</td>
</tr>
<tr>
<td>-BF3</td>
<td>0</td>
</tr>
<tr>
<td>-BF3 (Treated)</td>
<td>0</td>
</tr>
<tr>
<td>-BF4</td>
<td>0</td>
</tr>
<tr>
<td>-BF5</td>
<td>0</td>
</tr>
<tr>
<td>-BF6</td>
<td>0</td>
</tr>
<tr>
<td>-BF7</td>
<td>0</td>
</tr>
<tr>
<td>-BF8</td>
<td>0</td>
</tr>
<tr>
<td>-BF9</td>
<td>0</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

We would like to give a special thank you to all of the faculty and staff that have participated in our research. Lab space and consultation provided by Dr. Thomas Cahill. Reference data and consultation provided by Dr. Beth Polidoro. NCEHSS program coordinated by Dr. Pamela Marshall and Dr. Jennifer Hackney-Priess.

CITATIONS

Full Protocol