Voracity in Desert and Urban Black Widow Spiders subjected to ALAN treatment

Brian Ballantyne, Tristan Pedroza, Anika Reveles, Damara Willis, J. Chadwick Johnson

School of Mathematical and Natural Sciences, Arizona State University-West Campus

Introduction

- ALAN, or Artificial Light at Night, is a form of light pollution that has increased due to urbanization and population growth [1].
- ALAN can be disorienting and lead to changes in foraging, competition and predation [2].
- Light pollution has been found to cause developmental issues in certain spiders [3].
- Voracity, or aggression toward prey, in Black Widow spiders (Latrodectus hesperus) can be measured by how quickly a spider responds to a prey stimulus.
- It was predicted there would be greater voracity in black widow spiders subjected to ALAN treatment compared to voracity before treatment.

Methodology

- In total, 22 Black Widow Spiders were collected from 2 Sonoran desert sites on 4/22/22 and 4 urban Phoenix sites on 3/27/22.
- Voracity was tested bi-weekly using 3 treatments: artificial prey vibration test pre-feeding, live prey cricket test, and artificial prey vibration test post-feeding. Spiders were weighed after each artificial prey vibration test.
- Prey vibration device used was a generic electric toothbrush. Other studies have employed similar vibration devices to test spider voracity [4].
- The electric toothbrush was set to its massage setting. A 4 inch wooden stick was secured to the end of the toothbrush and used to contact the web about 5-6 cm away from the spider.
- Live prey tests involved the use of crickets held against the web about 5-6 cm away from the spider. Spiders were only fed during live prey tests.
- A maximum response time of 300 seconds was used to measure voracity of black widow spiders. Time was stopped and recorded when spiders began to throw web at the stimulus.
- ALAN treatment was set to an 8:16 reverse photoperiod with 8 hours of nighttime light (~1.7 lx) and 16 hours of daytime light (~3000 lx).
- A natural light room was set to 8:16 reverse photoperiod with 8 hours of complete darkness (0 lx) and 16 hours of daytime light (~1000-3000 lx).

Results

- Desert spiders, relative to urban spiders, were significantly quicker to attack both artificial prey and live prey vibrations (Figure 1: p<0.01).
 - However, when we tested their voracity response a day after feeding, we found that this habitat difference no longer existed (Figure 1: p=0.1).
- We found no difference between a spider's (urban or desert) voracity towards an artificial prey vibration (electric toothbrush) and a live prey vibration (p=0.5).
- Spider body mass was a poor predictor of voracity towards artificial prey (Figure 2: r²=0.16) and live prey (Figure 3: r²=0.14).
- We found no difference between urban and desert spider mass at any stage in the experiment (p>0.1).

Conclusion

- Desert Black Widow spiders showed higher voracity toward prey stimulus than urban spiders indicating urbanization may have an impact on behavior.
- Voracity in desert populations decreased following live prey captures, suggesting a link between hunger and voracity.
- No correlation was found between mass and voracity.
- The impact of urbanization and human disturbances may decrease risk taking behavior while foraging, thereby reducing voracity [5].
- Further investigation is necessary to fully establish and confirm causative factors of the correlation between urbanization and voracity.
- Research on the effects of ALAN on spider voracity are still being conducted.

Acknowledgements

- Research supported by the National Institute of Environmental Health Sciences of the National Institute of Health (award number R25ES030238).

Literature Cited