Vitamin D Impacts Nrf-2 Signaling and Antioxidant Pathways that Modulate Cellular Aging

Zheia L. Sabir1, Sarah Livingston2, G. Kerr Whitfield3, Mark R. Haussler2, and Peter W. Jurutka1,2

1Mathematical and Natural Sciences, Arizona State University West Campus, Phoenix, AZ; 2Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ.

Research Question: Does Vitamin D increase Nrf-2 activity?

Methodology

- The nuclear factor (erythroid-derived 2)-like 2 protein (Nrf-2) is a potential therapeutic target against oxidative stress, protection against disease, and induction of cellular proliferation.
- It has been proposed that the active vitamin D hormone, 1,25-dihydroxyvitamin D (1,25D), is able to effectively promote "healthful aging". One possible mediator of this effect is through association of 1,25D/VDR with Nrf-2 signaling.

The Optimal Concentration of Nrf-2 Plasmid

The 1,25D target gene, CYP24a1, was measured as a positive control. In this study, 1,25D/DMSO treated cells showed the highest concentration of Nrf-2 while the lowest concentration of 1,25D revealed an increase in Nrf-2 activity.

Table 1. Summary of Expression of Nrf-2 Target Genes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CYP</th>
<th>GCLC</th>
<th>HMOX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25D/DMSO</td>
<td>1.6</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>10^-10M 1,25D/UA</td>
<td>0.93</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>5x10^-10M 1,25D/UA</td>
<td>0.59</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Investigation of different concentrations of pcDNA3.1-Nrf2 to identify a dose-response relationship for the ARE-luciferase plasmid in the presence and absence of 1,25D.

Conclusions

- 1,25D has the ability to inhibit Nrf-2/ARE activity, however this effect is reversed by the addition of UA.
- 50 ng of 1,25D expression plasmid represented the most responsive ARE-luciferase reporter system.
- 1,25D-VDR has a DUAL role in Nrf-2/anti-oxidation. High concentrations of 1,25D inhibit Nrf-2 activity, lower concentrations boost Nrf-2 activity.
- Inhibition by high levels of 1,25D was observed in Nrf-2 target genes (GCLC and HMOX1) as measured by qPCR.
- Modulation of Nrf-2 activity by the vitamin D pathway and by Urolithin A may have a regulatory role in anti-oxidation and cellular aging pathways.

Future Directions

- We will continue to examine how 1,25D interacts with or affects Nrf-2 /pathway by performing the following:
 - A series of qPCRs utilizing Nrf-2 target genes to test the effects of different concentrations of 1,25D and urolithin A on expression of these anti-oxidation genes.
 - Continue to test 1,25D impact on the Nrf-2 pathway using the ARE-luciferase system.
 - Further test additional pathways in the presence of 1,25D and/or UA.
 - How and where 1,25D/VDR interacts in the Nrf-2 pathway, including potential association with the Maf protein.

Acknowledgments/References

This research was supported by the School of Mathematical and Natural Sciences at Arizona State University.