

New College Environmental Health Science Scholars Summer 2023, Arizona State University – West Campus, Phoenix, AZ 85306

Introduction/Hypothesis

- The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a public repository that enables sharing of ovary histology images and metadata for education and research purposes.
- Question: Will fish exposed to 17 alpha-ethinylestradiol (EE2) have more effects on their ovaries than fish with no exposure?
- EE2 is a synthetic estrogen found in birth control pills. • It is excreted from the human body and eventually enters waterways that have fish populations.
- Fish reproductive health may be affected by the EE2 hormone mimic.
- Our hypotheses were made to explore this question.
 - **1st hypothesis:** If fathead minnows (*Pimephales promelas*) are exposed to EE2, then no differences will be observed on oocyte development compared to non-exposed fish.
 - **2nd hypothesis:** If zebrafish (*Danio rerio*) are exposed to EE2, then no differences will be observed in oocyte development compared to non-exposed fish.

Methods

- We conducted a literature review and identified potential collaborators that exposed fathead minnows or zebrafish to EE2.
- We sent requests via email for their ovary histological images/slides.
- To identify fish oocytes in different stages of development, we adapted QuPath software [1] being used by the MOTHER project to identify monkey ovarian follicles in different developmental stages (see Fig. 1). • We edited the original script code and replaced non-human primate follicle classes with the new classes to identify fish oocytes.
- We used an Olympus brightfield microscope and cellSens software to digitize ovary histology slides from California Sheephead (*Semicossyphus pulcher*) and Weedy Seadragon (*Phyllopteryx*) taeniolatus).

lasses = [
getPathClass("Unclassified",	ColorTools.makeRGB(0, 0, 0)),
getPathClass("Primordial",	ColorTools.makeRGB(255,165, 0)),
getPathClass ("Transitional Primordial"	,ColorTools.makeRGB(0,128, 0)),
getPathClass("Primary",	ColorTools.makeRGB(0, 0,255)),
getPathClass("Transitional Primary",	ColorTools.makeRGB(255, 0, 0)),
getPathClass("Secondary",	ColorTools.makeRGB(255,255, 0)),
getPathClass("Multilayer",	ColorTools.makeRGB(0, 0,128)),
getPathClass("AMF",	ColorTools.makeRGB(240,230,140)),
getPathClass("Antral",	ColorTools.makeRGB(128, 0, 0)),
getPathClass("Atretic Antral",	ColorTools.makeRGB(0, 0, 0)),
getPathClass("Multi-oocytic",	ColorTools.makeRGB(0,255, 0)),
getPathClass("Unkown?",	ColorTools.makeRGB(0,255,255)),
getPathClass("Corpus Luteum",	ColorTools.makeRGB(128,128,128)),
getPathClass("Blood Vessel",	ColorTools.makeRGB(240,240,240)),
getPathClass("Cortex Outer Border",	ColorTools.makeRGB(255, 50, 50)),
getPathClass("Cortex Inner Border",	ColorTools.makeRGB(50, 50,255)),
getPathClass("PIE",	ColorTools.makeRGB(0, 0, 0))

Non-human Primate Follicle Classes

classes = [Colormool o mole	
getPathClass("Oogonia",	ColorTools.mak	$e_{KGB}(0,0,0)),$
getPathClass("Chromatin nucle	olar oocytes",	ColorTools.makeRGB(255,165, 0)),
getPathClass("Perinucleolar o	ocytes",ColorTools.	makeRGB(0,128, 0)),
getPathClass("Cortical alveol	ar oocytes",	ColorTools.makeRGB(0, 0,255)),
getPathClass("Vitellogenic oo	cytes", ColorTool	s.makeRGB(255, 0, 0)),
getPathClass("Mature-Spawning	Oocyte",	ColorTools.makeRGB(255,255, 0)),
getPathClass("Post-Ovulatory	Follicle",	ColorTools.makeRGB(0, 0,128)),
getPathClass("Unkown?",	Color	Tools.makeRGB(240,230,140)),

Fish Oocyte Classes

Fig. 1 Adapted QuPath Classification Program. MOTHER project script code (top) and adapted fish oocyte script code (bottom).

Exploration of Female Fish Ovaries

Aleli Jurado Gutierrez, Eliany Egusquiza Diaz, Karen H. Watanabe

Charts/Method

Oocyte Identification Chrom Oogonia Oocyte Fathead Minnow (Pimephales promelas) Vitellogenic Cortical Alveolar Mature Oocytes Oocytes Oocytes

Fig. 2 - A chart showing the different types of oocytes found in fathead minnow. Images and identification adapted from Johnson et al.[2]

Table 1 - Ovary Stages and Variations. This table shows the how ovaries are staged in different species. Fathead minnow, zebrafish, and Japanese medaka from Johnson et al. [2] have the same categorical stages. Stage classifications for the California sheephead were obtained from Sundberg et al. [3], and for the weedy seadragon from Forsgren et al. [4].

Uocyte Stages						
	Oogonia and Perinucleolar oocytes	Chromatin nucleolar oocytes and perinucleolar	Perinucleolar to cortical alveolar	Vitellogenic oocytes	Late vitellogenic and maturing follicles	Post ovulatory
Fathead Minnow Zebrafish Japanese Medaka (Oryzias latipes)	Stage o - Undeveloped	n/a	Stage 1 - Early spermatogenic	Stage 2 - Mid-development (Early Vitellogenic) Stage 3 - Late development (Late Vitellogenic)	Stage 4 - Late development /hydrated	Stage 5 - Post Ovulatory
California Sheephead	n/a	Immature	Early Maturing (cortical alveolar only)	n/a	Mature (Post Ovulatory may also be present)	Regressing /Recovering (Chromatin Nuclear and Perinucleolar may also be present)
Weedy Seadragon	Immature (Oogonia only)	n/a	Mature- Non- Reproductive	Mature - Reproductive	n/a	n/a

natin Nucleolar	Perinucleolar Oocytes	
es		
e-Spawning	Post-Ovulatory Follicle	

Results

Fig. 3 - Adapted QuPath software with some identified oocytes in California Sheephead histology digitized image. Original slide provided by Dr. Young at California State University, Long Beach.

Future Work

- Determining fish ovary stages
- contacted collaborator

References

investigation.

- doi:10.1038/s41598-017-17204-5.
- Ecotoxicity Testing: No. 123.
- doi: 10.3160/0038-3872-108.1.16.
- doi:10.1071/ZO08031.

Acknowledgments

This material is based upon work done in The New College Environmental Health Science Scholars Summer Program 2023 – Arizona State University West. Student research & communication was supported by the National Institute of Health, National Institute of Environmental Health under grant number 5R25ES030238-05. This research was also partially supported by: NSF DBI-2054061. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

• We received two responses to our email requests and follow-up emails to potential collaborators with fish ovary histology slides, but did not receive any histology images in time for this presentation.

• We developed a method for identifying oocytes in fish using QuPath software, see Fig.2 and Table 1, as the MOTHER project had focused on non-human primates and ovarian follicles.

• Using Olympus cellSens Imaging Software and a brightfield microscope, ovary slides of the California Sheephead and Weedy Seadragon were scanned, checked for quality, and documented in a workflow log. • Using the modified QuPath tool to annotate, we conducted follicle

identification of the scanned slides (see Fig. 3).

• Determining final counts of identified oocytes

• Identifying oocytes and ovary stages in histology images from our

• Improving oocyte and stage identification methods for cross species fish

[1] Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P.D....Hamilton, P.W. (2017)...Scientific Reports 7, 16878,

[2] Johnson, R. & Wolf, J. & Braunbeck, T. (2009). Series on Testing and Assessment:

[3] Sundberg MA, L. KA, L. CG, Young KA. Bull South Calif Acad Sci. 2009 Apr;108(1):16-28.

[4] Forsgren, K. L., & Young, K. (2008). Australian Journal of Zoology, 56(6), 441.