New College Environmental Health Science **Scholars**

Determining the Lethal Dose of Perfluoroalkyl Acids to Arabidopsis Plants

Jenny Tran, James Head, Natalie Hakim, Dr. Thomas M. Cahill School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ

- non-stick coatings for pans, and clothing manufacturing.¹
- to strong C-F bonds², they persist in the environment for an extended time. These are known as "forever chemicals".
- may bioaccumulate in plants, potentially leading to adverse effects the environment.³

TFA, 84.1 ppm PFPrA, and 96.0 ppm PFBA killed over

• Potential research will involve the transgenerational effects of TFA has on the seedlings of the

Acknowledgements

Research reported in this poster was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under award number R25ES030238.

. Ellis, D. A.; Mabury, S. A.; Martin, J. W.; Muir, D. C. G., Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 2001, 412

2. Brendel, S., Fetter, É., Staude, C., Vierke, L., & Biegel-Engler, A. (2018). Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under reach.

B. Benesch, J. A.; Gustin, M. S.; Cramer, G. R.; Cahill, T. M., Investigation of effects of trifluoroacetate on vernal pool ecosystems. Environmental Toxicology and Chemistry 2002,

4. Cahill. (2022). Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 56(13), 9428–9434. https://doi.org/10.1021/acs.est.2c01826.